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ABSTRACT 

A review is given of mathematical expressions for total  and mean specific kinetic  energies in  the  longitudinal, 
time,  and mixed  longitudinal-time  domains.  These  coordinate  domains differ from  those  defined  earlier  by  Qort. 
Mathematical  developments  are  extended  into  the  vertical  coordinate  domain. A new symbolism is introduced for 
describing  mean and eddy  motions. 

4. INTRODUCTION 

In  recent  years  a  large  number of studies-too numerous 
to  be listed here-were concerned with energy conversions, 
energy and mass  transports,  and  the  transports of trace 
substances  in  the  atmosphere.  Invariably  these  studies 
consider “mean”  and  “eddy” fluxes of atmospheric  prop- 
erties,  the  latter being defined as the  departures  from  the 
former,  and the  sum of both  describing the  total flux. As 
long as only time or space  averages are  dealt  with,  mean 
and  eddy  quantities  are easily defined and  calculated. If, 
however, both time  and  longitudinal  “domains”  are 
regarded  simultaneously, matters become fairly compli- 
cated, as has been pointed  out  by  Oort  (1964).  Vertical 
averages,  and  departures  thereof, would yield the baro- 
tropic and baroclinic  contributions  to energy conversion 
and  transport processes. These  have been considered 
separately  by Wiin-Nielsen and  Drake (1965, 1966). 
If one  should wish to consider the vertical  coordinate 
together  with the horizontal  space  and the  time coordi- 
nates,  the  mathematical problem  with  present  symbolism 
becomes unwieldy. This  paper  introduces  a new  symbolic 
language for mean and  eddy values, which is more  lengthy 
than  the one  introduced  by Osborne Reynolds  and  sub- 
sequently adopted-with  modifications-by many au- 
thors. It has  the  advantage, however, that  in each term 
the sequence of averaging  and  departure-forming  steps 
may  be viewed easily, even if several  coordinates are 
involved in  the averaging process. 

I n  an earlier study, Lorenz  (1953) proposed a symbolism 
based  upon the use of multiple  subscripts 0,  1, and 2 and 
the  permutations thereof which, however,  he  did not use 
in  later publications.  Although the “philosophy” of the 
notation  presented  here is rather similar to  the one by 
Lorenx, it has  the following additional  advantages: 

1) The use of subscripts  is  not  preempted  for  standard 
mathematical  notations (e.g., indicating  derivatives  or 
vector  components). 

2 )  The present notation allows a clear and  unambiguous 
indication of the sequence in which multiplication steps 
(for  instance  in  forming  products or squares of certain 
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values)  and  averaging or departure-forming  steps  have  to 
be  taken. 

3 )  The derivations  presented  here also include  products 
of linear  perturbation  terms which may bear out  certain 
correlations. They should  not  be neglected before their 
magnitudes  have been estimated. 

4) The  notation presented here is easier to  typeset  than 
the one using asterisks, primes, bars,  tildes,  etc. 

9. DEFlNlTBON OF SYMBOLS 

Averaging  processes  will be  indicated by brackets, 
departures  from  these averages by parentheses.  Subscripts 
in parentheses give the coordinates over which mean 
values and  departures thereof, were computed.  Thus, 

u = [ U l ( c ) + ( 4 ( 1 )  (1) 

stands for the familiar  sum of time  average  and  fluctua- 
tions about  this average, which yields the  instantaneous 
values of u. I t  follows from  this definition that 

[ [ ~ l ( t ) l ( t ) = [ ~ l ( L )  (2) 
and 

1 I(4tnlco=o, 

~ ~ ~ ~ ~ ~ ~ 0 1 ~ 1 ~ ~ ~ , ~ l ~ l ~ = ~ ;  (3) 
also, 

([ul(c))<C)=o, 

([([ul(t))(i) l( ,))(l)=o, (4) 

i and j being coordinates different from t .  
For  an additional  averaging process, for example 

with  respect to geographic longitude, the conditions 
(1) to (4) hold, as well as 

[UI(X. c)=[Ul(I.X) (5 )  

if the sequence of the  subscripts is to  indicate  the  sequence 
in which the averaging processes are performed.  Although 
condition (5) is mathematically  true  for  distributions of 
u, which are  steady  in  both  time  and space, there will be 
a difference between the  left  and  right  side of (5 )  in actual 
computations.  These discrepancies are caused by differ- 
ences in measurement  and  computational  errors, when 
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evaluating the  distribution of u first  in  a  space grid and 
then  computing the time  average  for each grid point, or 
when computing time-mean values of u for each observa- 
tion station,  and subsequently  interpolating  gridpoint 
values, averaging the  latter with  respect to longitude. 

In  the subsequent discussion we  will  assume-for the 
sake of simplicity-that condition (5 )  is true. It should 
be mentioned, however, that  an  inequality  in (5) will 
yield valuable  estimates  on the accuracy of subjective  or 
objective  techniques by which gridpoint  values of u 
were obtained. 

3. LONGITUDINAL  AND  TIME  COORDINATES 
From  equation (1) one may derive  double the value of 

the zonal component of specific kinetic energy (i.e., energy 
per unit mass) 

u= [u] (X) + (u) (X). (7) 

The following terms, which  will result  from  this  substitu- 
tion,  are  listed in the sequence of their  appearance  in 
equation (6) : 

v 

0 0 
+2[(~)~X,l~r~([~l(X))(2)+2~(~)~x~l~o(~)(X,l) 
0 0 

+([Ul(X))2(2)+2([ul(X))(t)‘(u)(X,t) 

+ (u)2(X,t). (8) 
@ 

Terms on the  right  side of this  equation  have been num- 
bered for  convenient reference. A similar expression may  be 
derived for 3. The instantaneous  and local total specific 
kinetic energy  will then  be given by 

K=%(u2+ZP). (9) 

We will  now define the “space  domain”  or,  more  appro- 
priately, the “longitudinal  domain.” The mean  kinetic 
energy in  this  domain  is given by [KJ,X) and differs from 
Oort’s definition. Double  the  contribution  towards  this 
quantity  by  the x-component of motion  is  obtained  by 
averaging  equation (8) with  respect to X. 

0 0 0 

+2[[(u)(h)l(l).(~)(X,01(X)+([~l(X))2(2) 

+[(u)2((x.01(X). (10) 

[~z~~(X)=[u12(X,r)+[[(u)(X)12(01(X)+2[~1(X,2)‘([~l(h))(t) 

0 0 
@ 

(Terms in this  equation  are  numbered  in correspondence 
with  equation ( 8 ) . )  All other  terms will vanish because 
they  contain  averaging processes of the form [ (u) (h)](X) 

which, according to condition (3), will be zero. Term @ 
has been retained because of a possible correlation  between 
[(u)(Xll(t) and (u)(A.r)- 

Term 0 stands  for  the kinetic energy of the  mean 
motion,  term @ contributes  towards  the  kinetic  energy of 
standing  eddies  (nota bene [ ( U ) ~ ( X ) ] ( X ) # O ) ,  and  terms 8 
and @ towards the effect of transient  eddies. Term @ 
indicates the “kinetic energy of pulsation,” i.e., the zonally 
averaged  mean zonal transport  by time pulsations of the 
mean zonal momentum.  This  term,  as well as  term 8, 
will vanish if equation (10) is averaged over both X and t .  

The eddy kinetic energy in  the longitudinal  domain may 
be defined as K-[[Kl(h). Double the  contribution  from  the 
u-component of motion is obtained by  subtracting  equa- 
tion (10) from  equation ( 8 ) .  

The mean  kinetic  energy in  the  time domain may  be 
computed  in  a similar fashion by considering 

All other  terms,  again,  vanish for reasons stated  before. 
Term @ gives a  measure of the kinetic energy of the  mean 
motion,  term. @ of the energy of standing  eddies, terms @ 
and @ of transient  eddies, and  term 0 stands for the 
kinetic  energy of pulsations produced by local variations 
of the zonal momentum.  .Term 0, again, has been retained 
because of a possible correlation between the two factors. 
Terms 0 and @, again, will vanish if equation (1 1) is 
averaged over both X and t. 

The eddy  kinetic  energy in  the time  domain is defined 
and  may be computed by  subtracting  equation (11) from 
equation (8). Analogous computations will have to  be 
carried o u t  for the v-component of flow. 

The mixed longitudinal and time  domain  has  a mean 
kinetic  energy given by [ K ] , ,  t ) .  Its u-component  contribu- 
tion may be obtained  from  equation (8) by applying the 
operation [ I r x , $ ) :  

All linear  terms  containing  parentheses,  naturally, will 
vanish, including all “pulsation” terms. Term 0 contains 
standing  eddy effects, terms 0 and @ transient  eddy 
effects. 

It is of interest to  note  that  the longitudinal  domain 
and  the  time  domain,  as well as  the mixed longitudinal- 
time  domain,  all  contain effects of standing  and  transient 
eddies, averaged in different but specific  ways. 

The eddy  kinetic  energy in  the mixed longitude-time 
domain is given by K - [ [ I ( l ( h , t ) = ( K ) ( ~ , , ) .  

The approach  taken by  Oort (1964) in defining the 
various  domains  is  slightly  different. (For  the  sake of 
brevity we  will omit the v-component as well as  the 
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integration X f dm over the vertical  extent of the atmos- I 0 0 
phere,  both  contained  in  Oort's  notation,  from  our con- 
sideration.) In his  definition the values of [I(l(A,t) given by 

+2[ul(p,x.o'([u](~,x))(t)+2[ul(p.A,r)'([(~)(p)l(X))(t) 

kinetic energy" considered by  Oort. 
+~[(~)(P)~(A.~)'([~](P,A))(I) tributions.  Thus, [ K I  ( A , 1 )  is equivalent to the  "total @ ' 

@ equation (12) are decomposed into  eddy  and mean con- 

of equation (12) with [ ](x) as mean contribution (i.e., 0 .+~[(U)(,)I(~,,).([(~)(P,~CA))(~) 
,and @), and  the  terms  with ( ) ( A )  as eddy contribution I 

(i.e., @ and a). Oort's  time  domain consists of the mean 
terms [ (i.e., @ and a), and of the  eddy  terms ( )(() 

(i.e., @ and 0). Oort's mixed domain has only  term 0 
of equation (12) with [ as mean  contribution. All 
other  terms  containing a t  least one set of parentheses 
contribute  towards  the  eddy energy. @ 

Oort's definition of the space  domain  contains the terms @ 

0 @ 
+2[~l~,,x,,~.([~l(,,)(x,,~+2~~l~,,x,~~.(~)~P,x.1~ 

0 @ 
0 

. f ~ [ ( ~ ) ~ ~ ~ l ( h , ~ ) ' ( [ ~ l ( ~ ) ) ( h , t ) + ~ [ ( ~ ) ( ~ ~ l ( h . O ' ( ~ ) ( ~ , h . l )  

4. THE VERTICAL  COORDINATE 
+~[([~](P))(~)~CO'([~I(P.A))(~) 

Following a suggestion by Wiin-Nielsen and Drake @ 
(1965), we may define a vertical  averaging process along 
the coordinate p by 

+~[([~I(P))(~~I(~)'([(U)(+)I(X))(~) 
0 < 

0 
U=[uI(P)+ (U)(P)' (13) +2[(u)(~.A)l(r)'([ul(~.A))(r) 

[u](,) symbolizes the barotropic  contribution  towards the 
atmospheric (zonal) flow, (u) ( p )  the  baroclinic  contribution. 
Substitution of this expression into equation (8) yields 
the following equation (14). As will be shown later,  many 

been retained  here  for the  sake of completeness. Computa- 
suitable  averaging procedures. Nevertheless,  they  have 

+2[([uI(,))(h)l(r)'([U1(p))(h.r) of the terms  contained  in  equation (14) will vanish  with 
@ 

0 @ mandatory  to  retain  the  complete  set of terms. 
sectors  and  during  time  periods ~ < t  might also make it 

+2[([ul(,))(h)l(t)'(~)(~.A.~) tion of eddy  transport processes within  certain  longitude 

0 
+2[(u)(p,A)l(a)'([(u)(p)l,A))(l) 

0 @ 

i+2[(~)(p,~)](~).([U](p)>(h,~)+2[(~)(~,X)](~)'(~)(~,A.1) 

Term  number 
in equation (8) Equation (14) 

In order  to  estimate the mean  kinetic energies in  the 
0 0 various  domains we will, for the sake of brevity,  indicate 

0 mind that these  terms will have to be divided by two, and 

+[(~ul(,)>(A)12(t)+2[([ul(p)>(h)l(l)'[(~)(~,A)1(1) only the term  numbers of equation (14), which enter  into 
the expressions of kinetic energy. I t  should be kept in 

L + [ ( ~ > ( P . X ) I ~ ( ~ )  appropriate  terms for the u-components  will have  to be 



March 1969 Elmar R. Reiter 203 

Mean  kinetic energy in the space-time domain: 
[ ~ 2 1 ( P . h , l ) = 0  . +[@I(,, . 

* +[@I(X,  * + [ @ l ( P U l  . 

* +[@lcn * +[@I(P,Z) * 

* [@1(h,O * +[@)l(p,X,r). 

(21 1 
Expressions (15) , (16), and (17)’ which represent the 

domains of a simple coordinate, each contain 20 terms. 
Those  terms  written  without  brackets will not  be altered 
by  the additional averaging processes. They  may  be  taken 
as they  appear  in  equation (14). Bracketed  terms will 
have  to be subjected to  an averaging process along the 
coordinate(s)  indicated  in the  subscript(s). 

Expressions (IS),  (19)’ and (20) represent mixed do- 
mains of two  simultaneous coordinates. They  contain 12 
terms  each,  namely  those that appear  simultaneously in 
the two expressions representing the  appropriate two 
single-coordinate domains. Expression (21) stands for the 
mixed spacetime domain (the “space”  being  assumed 
two-dimensional). Its eigh,t terms  are  those that appear 
simultaneously in equations (15), (16), and (17). They 
are  the quadratic terms of equation (14). All linear  terms 
vanish in  the additional  triple-averaging processes. 

The  appropriate eddy kinetic energies may  be  found  by 
subtracting  the  mean kinetic energies from  the  total 
kinetic energy K=x(u2+v2), which may  be  obtained  from 
equation (14) and  from  a  similar  equation for the o- 
component. 

Following Oort’s (1964) approach  one  might decompose 
expression (21) into mean  and  eddy  terms,  similar to  the 
discussion subsequent to  equation (12). Table 1 gives a 
schematic view of all possible decompositions of [ U ~ ] ( ~ , X ,  t ) .  

The significance of these  terms  can easily be  inter- 
preted. For example, standing eddies appear  under  the 
category  “time  mean” in  table 1. Barotropic  contribu- 
tions are listed  under  “vertical  mean.” The barotropic 
contributions  from standing eddies are found  under 
vertical-time  mean.  Transient eddies and baroclinic 
contributions are listed in  the  appropriate categories of 
the  eddy column. 

5. CONCLUSIONS 

For most  practical purposes, when  one is concerned 
only  with the average  characteristics of the  atmosphere 
throughout its depth,  on  a global basis, and  during  a 
certain period of time (e.g., 1 mo),  equation (21) will 
give all  required  detials. It describes standing,  transient, 
barotropic, and baroclinic eddy  effects,  superimposed 
upon the mean  motion (see table 1). Only eight  terms 
out of the 36 listed in  equation (14)’ therefore, will 
have to  be  retained. T o  the  best of the author’s knowledge, 
no attempts  have been made  yet to  estimate  the  relative 
magnitudes and  the  importance of these  terms describing 
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TABLE 1.-Decomposition -of [ U ~ ] ( , , . X , ~ ) .   T e r m  numbers  refer to 
equation (14) and  appear as listed in equation ( d l ) .  

the  complete  space-time  domain. The complexity of the 
standard  mathematical  notation  may  have been a de- 
terrent  factor  in  conducting  such  a  three-dimensional 
study of atmospheric processes. It is hoped that  the 
notation  presented  here will stimulate  such “more- 
dimensional” investigations of the stmosphere’s  general 
circulation. 

Equations (15) through  (20), which contain  additional 
terms, may  have to  be used for specific investigations 
which preclude  averaging over all coordinates.  For 
example, equation (20)  will have  to be applied if eddy 
transport terms are to be  computed over individual 
longitude  sectors x i < x  (i indicating the sector  number). 
Since [( )(h)](hi) z 0, the terms  retained  in  equation 
(20), but not  in equation  (21),  may  be of significance. 
Similar  considerations will hold for atmospheric  layers 
pi<p and for time  periods r<t .  Equation (18) or (19), 
respectively, will have t o  be  applied in such  instances. 

From  the foregoing it appears that  it may  not  be 
necessary to compute  all 36 terms of equation  (14)’ 
and  the  resulting  terms  in the various  kinetic energy 
equations. No critique  shall  be  voiced,  therefore, of the 
many  investigations  carried out  by numerous  authors 
who have used approximate expressions. For the  sake of 

completeness all  terms, even those  from which we may 
expect only negligible contributions,  have been listed 
in the foregoing derivation. It would be  worthwhile to 
investigate  with  actual data which of the terms  in  equa- 
tions (14) through (21) may  safely  be  neglected.  Such 
computations  should  be  carried out for both,  the u- 
and v-components of motion, and for an extended period 
of time. 

Once such an investigation  has  been  made one may 
venture  into  the following problems: 

1) In addition to the expressions for kinetic  energy, 
those of momentum  transport-involving  terms u, v- 
and of potential  energy  should  be explored in  a similar 
fashion. 

2)  The energy conversion and  transport  equations,  as 
for  instance  derived  by  Lorenz  (1955)  and  Muench  (1965), 
may be treated  in a more  detailed way than has been 
attempted so far. 

3)  The geographical latitude, 6, or sin 6, may be added 
as an additional  domain. This, of course, would increase 
to 136 the number of terms in an  equation  similar to  (14). 

4 )  Each of the  terms in the foregoing equations con- 
taining  parentheses  and yielding a  worthwhile  contribu- 
tion,  might  be  expanded in  the wave number  domain,  as 
suggested by  Saltzman  (1957). 
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